Nom

Date

Partie A : Choix multiples (choisis la meilleure réponse)

Utilise le graphique à la droite pour répondre aux questions 1 et 2

- 1. Quelle est la période de la fonction sinusoïdale?
- a) 3
- b) 6
- c) 6π
- 2. Quelle est l'amplitude de la fonction sinusoïdale?
- a) 0
- c) 6
- d) 12
- 3. Trouve l'équation de tous les zéros de la fonction $f(x) = \tan x$

a)
$$x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
 b) $x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$ (c) $x = k\pi, k \in \mathbb{Z}$ d) $x = 2k\pi, k \in \mathbb{Z}$

d)
$$x=2k\pi, k\in \mathbb{Z}$$

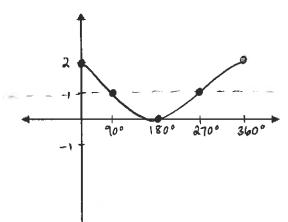
- 4. Lequel est équivalent à $\cot^2 x$? $\frac{\cos^4 x}{\sin^4 x}$
- (a) $\frac{1-\sin^2 x}{\sin^2 x}$ (b) $\frac{1-\cos^2 x}{\cos^2 x}$ (c) $\frac{\sin^2 x}{\cos^2 x}$ (d) $\sec^2 x + 1$
- 5. Quelle est la période de la fonction suivante : $y = \sin\left(\frac{2}{3}x\right)$ $2\pi \div \frac{2}{3} = 2\pi \times \frac{3}{3} = 3\pi$

a) $\frac{\pi}{2}$

- b) 2π
- (c) 3π
- d) $\frac{3\pi}{2}$
- 6. Laquelle des expressions suivantes est équivalente à $2\sin(4x)\cos(4x)$? $\sin[2(4x)]$
- a) $2\cos(4x)$
- b) $2\sin(4x)$
- (c)) $\sin(8x)$
- d) cos(8x)
- 7. Trouve toutes les valeurs non-permises de l'expression suivante : $\frac{\cos x}{\sin x 3}$ $\sin x \neq 3$
- a) $x \neq \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$ b) $x \neq \frac{3\pi}{2} + 2\pi k, k \in \mathbb{Z}$ c) $x \neq \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$ d) aucune valeur non-permise
- 8. Trouve la valeur exacte de l'expression suivante : $\cos^2\left(\frac{\pi}{12}\right) \sin^2\left(\frac{\pi}{12}\right) = \cos\left[\lambda\left(\frac{\pi}{12}\right)\right]$ a) $\frac{\sqrt{2}}{2}$ b) $-\frac{\sqrt{2}}{2}$ c) $-\frac{\sqrt{3}}{2}$ d) $\frac{\sqrt{3}}{2}$ = $\cos\left(\frac{\pi}{6}\right)$
- a) $\frac{\sqrt{2}}{2}$

Partie B: Questions à réponses courtes (SANS calculatrice)

- 1. Trace le graphique de $y = \cos x + 1$ sur l'intervalle $0 \le \theta \le 360^{\circ}$.
- 2. Trace le graphique de $y = 2 \sin x$ sur l'intervalle $-2\pi \le \theta \le 2\pi$.



 $\frac{2}{-2\pi} \frac{2}{-3\pi/2} \frac{\pi}{2} = \frac{\pi}{2} \frac{\pi}{2} = \frac{\pi}{2} \frac{\pi}{2} = \frac{\pi}{2$

Fais certain de bien indiquer tes échelles!!!

3. Donne l'équation d'une fonction sinusoïdale qui a une période de 6π et une amplitude de 2.

$$P = 6\pi$$

$$b = \frac{2\pi}{6\pi} = \frac{1}{3}$$

$$y = \frac{2 \sin(\frac{1}{3}x)}{2 \cos(\frac{1}{3}x)}$$

4. Si $\cos^2 \theta = \frac{2}{5}$, quelle est la valeur de $\sin^2 \theta$?

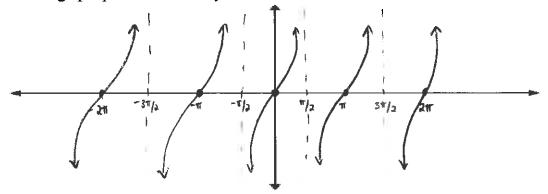
$$\sin^2\theta = 1 - \cos^2\theta$$
$$= 1 - \frac{2}{5}$$

5. Si $f(x) = 4\sin\left(\frac{\pi}{2}(x-1)\right) + 1$, trouve la valeur de f(4).

$$f(4) = 4\sin\left(\frac{\pi}{4}(4-1)\right)+1$$

= $4\sin\frac{3\pi}{2}+1=4(-1)+1$

6. Trace le graphique de la fonction $y = \tan x$. Fais certain d'inclure l'échelle.



Partie C: Questions à réponses développées (SANS calculatrice)

1. a) Trouve les valeurs non-permises de l'identité suivante sur l'intervalle $[0,2\pi]$

$$\frac{\sin x + \tan x}{1 + \sec x} = \sin x$$

$$\frac{\sin x + \tan x}{1 + \frac{1}{\cos x}} = \sin x$$

$$\frac{\cos x + \sin x}{\cos x} = \sin x$$

$$\frac{\cos x + \sin x}{\cos x} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x + \cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x + \cos x)} = \sin x$$

$$\frac{(\cos x + \cos x)}{(\cos x + \cos x)} = \sin x$$

b) Prouve l'identité suivante : $\frac{\sin x + \tan x}{1 + \sec x} = \sin x$

$$\cos x \neq -1$$

$$x \neq T$$

cosx + 1

2. Trouve la valeur exacte de
$$\cos \frac{13\pi}{12}$$
 $\frac{15\pi}{12} - \frac{2\pi}{12} = \frac{5\pi}{4} - \frac{\pi}{6}$

$$\cos\left(\frac{5\pi}{4} - \frac{\pi}{6}\right) = \cos\frac{5\pi}{4}\cos\frac{\pi}{6} + \sin\frac{\pi}{4}\sin\frac{\pi}{6}$$

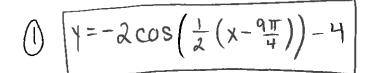
$$= \left(-\frac{\sqrt{a}}{a}\right)\left(\frac{\sqrt{3}}{a}\right) + \left(-\frac{\sqrt{a}}{a}\right)\left(\frac{1}{a}\right)$$

$$= -\frac{\sqrt{6}}{4} - \frac{\sqrt{a}}{4}$$

$$= -\frac{\sqrt{6}}{4} - \frac{\sqrt{a}}{4}$$

3. Trouve l'équation sinusoïdale de la courbe suivante dans la forme $y = a\cos(b(x-c)) + d :$

$$\frac{14}{2}b = \frac{2\pi}{p} = \frac{2\pi}{4\pi} = \frac{1}{2}$$

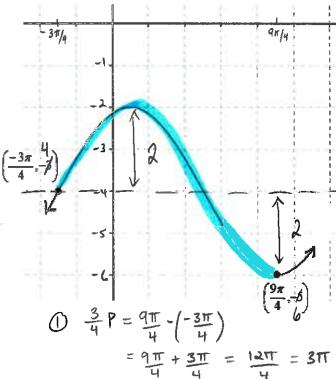


$$a = \frac{2}{\sqrt{2}} \frac{(0.5)}{\sqrt{2}}$$

$$b = \frac{1/2}{\sqrt{2}} \frac{(0.5)}{\sqrt{2}}$$

$$c = \frac{9\pi/4}{4} \left(y = -\cos x \right) \frac{(0.5)}{\sqrt{2}}$$

$$d = -4 \frac{(0.5)}{\sqrt{2}}$$



4. Étant donné la valeur de $\cos \alpha = \frac{3}{7}$ et $\sin \beta = \frac{4}{5}$, trouve la valeur exacte de $\frac{4}{3}$, $\frac{3}{4}$, $\beta = 3\pi$, $\frac{4}{3}$ $\cos(\alpha - \beta)$ si α et β ne sont pas dans le premier quadrant.

$$/4 \quad \sin^2 \alpha = 1 - \cos^2 \alpha \qquad \cos^2 \beta = 1 - \sin^2 \beta$$

$$\sin^2 x = 1 - \left(\frac{3}{7}\right)^2$$

$$\sin^2 x = 1 - \left(\frac{3}{7}\right)^2$$
 $\cos^2 \beta = 1 - \left(\frac{4}{5}\right)^2$

$$\sin^2\alpha = 1 - \frac{9}{49}$$

$$\cos^2\beta = \frac{9}{25}$$

$$\cos \beta = \pm \frac{3}{5}$$

$$\frac{X}{V} : sind = -\sqrt{40}$$

$$\sqrt{\frac{1}{X}}$$
 $\cos \beta = \frac{3}{5}$

$$\cos(\alpha-\beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta = \left(\frac{3}{7}\right)\left(\frac{-3}{5}\right) + \left(\frac{-40}{7}\right)\left(\frac{4}{5}\right) = \frac{-9}{35} - \frac{4\sqrt{40}}{35}$$

Partie D: Questions à réponses développées (AVEC calculatrice)

1. Résous pour x dans l'intervalle $[0, 2\pi]$:

$$2\cos^{2}x = 3\sin x$$

$$2(1-\sin^{2}x) = 3\sin x$$

$$2-2\sin^{2}x = 3\sin x$$

$$0 = 2\sin^{2}x + 3\sin x - 2$$

$$0 = (\sin x + 2)(2\sin x - 1)$$

$$\sin x = -2 \quad \sin x = \frac{1}{2}$$

$$0 = \cos x + 3\sin x$$

$$0 = 2\sin x + 3\sin x - 2$$

$$0 = (\sin x + 2)(2\sin x - 1)$$

$$\sin x = -2 \quad \sin x = \frac{1}{2}$$

$$0 = \cos x + 3\sin x$$

$$0 = 2\sin x + 3\sin x - 2$$

$$0 = 3\sin x + 3\sin x - 2$$

$$1 = 2\sin x + 3\sin x - 2$$

$$1 = 2\sin x + 3\sin x - 2$$

$$2 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$2 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$2 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

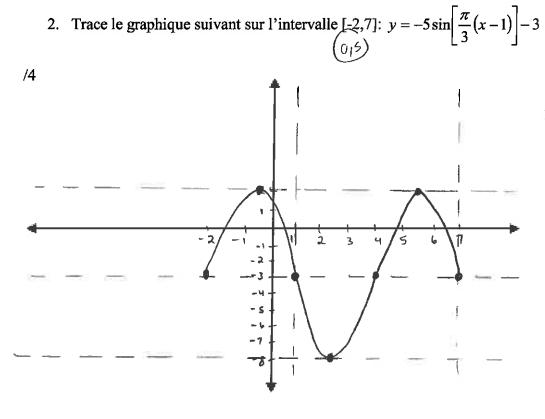
$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x + 3\sin x - 2$$

$$3 = 2\sin x + 3\sin x +$$



a = 5 (015) d = -3 (015) $P = 2\pi : \pi$ $= 2\pi \cdot \frac{3}{3}$ = 6 (015)

